Устранение особенностей и аналоги теоремы Сохоцкого-Вейерштрасса для Q-отображений
Zhytomyr State University Library
View Archive InfoField | Value | |
Relation |
http://eprints.zu.edu.ua/13842/
|
|
Title |
Устранение особенностей и аналоги теоремы Сохоцкого-Вейерштрасса для Q-отображений
|
|
Creator |
Севастьянов, Є. О.
|
|
Subject |
Mathematical Analysis
|
|
Description |
We prove that an open discrete Q-mapping f : D → Rn has a continuous extension to an isolated boundary point if the function Q x ( ) has finite mean oscillation or logarithmic singularities of order at most n – 1 at this point. Moreover, the extended mapping is open and discrete and is a Q-mapping. As a corollary, we obtain an analog of the well-known Sokhotskii–Weierstrass theorem on Q-mappings. In particular, we prove that an open discrete Q-mapping takes any value infinitely many times in the neighborhood of an essential singularity, except, possibly, for a certain set of capacity zero. |
|
Publisher |
Національна академія наук
|
|
Date |
2009
|
|
Type |
Article
PeerReviewed |
|
Format |
text
|
|
Language |
uk
russian |
|
Identifier |
http://eprints.zu.edu.ua/13842/1/1.2.pdf
Севастьянов, Є. О. (2009) Устранение особенностей и аналоги теоремы Сохоцкого-Вейерштрасса для Q-отображений. Український математичний журнал, 61 (1). pp. 116-126. ISSN 1027-3190 |
|